Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma.

نویسندگان

  • Oded Farago
  • Niels Grønbech-Jensen
چکیده

The diffusive dynamics of a particle in a medium with space-dependent friction coefficient is studied within the framework of the inertial Langevin equation. In this description, the ambiguous interpretation of the stochastic integral, known as the Itô-Stratonovich dilemma, is avoided since all interpretations converge to the same solution in the limit of small time steps. We use a newly developed method for Langevin simulations to measure the probability distribution of a particle diffusing in a flat potential. Our results reveal that both the Itô and Stratonovich interpretations converge very slowly to the uniform equilibrium distribution for vanishing time step sizes. Three other conventions exhibit significantly improved accuracy: (i) the "isothermal" (Hänggi) convention, (ii) the Stratonovich convention corrected by a drift term, and (iii) a newly proposed convention employing two different effective friction coefficients representing two different averages of the friction function during the time step. We argue that the most physically accurate dynamical description is provided by the third convention, in which the particle experiences a drift originating from the dissipation instead of the fluctuation term. This feature is directly related to the fact that the drift is a result of an inertial effect that cannot be well understood in the Brownian, overdamped limit of the Langevin equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the connection between dissipative particle dynamics and the Itô-Stratonovich dilemma.

Dissipative Particle Dynamics (DPD) is a popular simulation model for investigating hydrodynamic behavior of systems with non-negligible equilibrium thermal fluctuations. DPD employs soft core repulsive interactions between the system particles, thus allowing them to overlap. This supposedly permits relatively large integration time steps, which is an important feature for simulations on large ...

متن کامل

Brownian motion in inhomogeneous suspensions.

The Langevin description of Brownian motion in inhomogeneous suspensions is here revisited. Inhomogeneous suspensions are characterized by a position-dependent friction coefficient, which can significantly influence the dynamics of the suspended particles. Outstanding examples are suspensions in confinement or in the presence of a temperature gradient. The Langevin approach in inhomogeneous sys...

متن کامل

Stochastic Energetics of Non-uniform Temperature Systems

We propose an energetic interpretation of stochastic processes described by Langevin equations with non-uniform temperature. In order to avoid Itô-Stratonovich dilemma, we start with a Kramers equation, and derive a Fokker-Plank equation by the renormalization group method. We give a proper definition of heat for the system. Based on our formulations, we analyze two examples, the Thomson effect...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription.

We deduce a nonlinear and inhomogeneous Fokker-Planck equation within a generalized Stratonovich, or stochastic α, prescription (α=0, 1/2, and 1, respectively, correspond to the Itô, Stratonovich and anti-Itô prescriptions). We obtain its stationary state p(st)(x) for a class of constitutive relations between drift and diffusion and show that it has a q-exponential form, p(st)(x)=N(q)[1-(1-q)βV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2014